Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine.
نویسندگان
چکیده
The influence of alpha and beta subunits on the properties of nicotine-induced activation and desensitization of neuronal nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes was examined. Receptors containing alpha4 subunits were more sensitive to activation by nicotine than alpha3-containing receptors. At low concentrations of nicotine, nAChRs containing beta2 subunits reached near-maximal desensitization more rapidly than beta4-containing receptors. The concentration of nicotine producing half-maximal desensitization was influenced by the particular alpha subunit expressed; similar to results for activation, alpha4-containing receptors were more sensitive to desensitizing levels of nicotine than alpha3-containing receptors. The alpha subunit also influenced the rate of recovery from desensitization; this rate was approximately inversely proportional to the apparent nicotine affinity for the desensitized state. The homomeric alpha7 receptor showed the lowest sensitivity to nicotine for both activation and desensitization; alpha7 nAChRs also demonstrated the fastest desensitization kinetics. These subunit-dependent properties remained in the presence of external calcium, although subtle, receptor subtype-specific effects on both the apparent affinities for activation and desensitization and the desensitization kinetics were noted. These data imply that the subunit composition of various nAChRs determines the degree to which receptors are desensitized and/or activated by tobacco-related levels of nicotine. The subtype-specific balance between receptor activation and desensitization should be considered important when the cellular and behavioral actions of nicotine are interpreted.
منابع مشابه
Nicotine-induced Up-regulation and Desensitization of 4 2 Neuronal Nicotinic Receptors Depend on Subunit Ratio*
Desensitization induced by chronic nicotine exposure has been hypothesized to trigger the up-regulation of the 4 2 neuronal nicotinic acetylcholine receptor (nAChR) in the central nervous system. We studied the effect of acute and chronic nicotine exposure on the desensitization and up-regulation of different 4 2 subunit ratios (1 :4 , 2 :3 , and 4 :1 ) expressed in Xenopus oocytes. The presenc...
متن کاملLayer-specific interference with cholinergic signaling in the prefrontal cortex by smoking concentrations of nicotine.
Adolescence is a period in which the developing prefrontal cortex (PFC) is sensitive to maladaptive changes when exposed to nicotine. Nicotine affects PFC function and repeated exposure to nicotine during adolescence impairs attention performance and impulse control during adulthood. Nicotine concentrations experienced by smokers are known to desensitize nicotinic acetylcholine receptors (nAChR...
متن کاملLower core body temperature and attenuated nicotine-induced hypothermic response in mice lacking the beta4 neuronal nicotinic acetylcholine receptor subunit.
Diverse physiological and pathological effects of nicotine, including the alteration of body temperature, are presumably mediated by neuronal nicotinic acetylcholine receptors (nAChR). Previous studies have suggested the involvement of distinct nAChR subunits in nicotine-induced thermoregulation. We studied genetically manipulated knockout mice lacking the alpha7, alpha5 or beta4 subunit genes,...
متن کاملSubunit-dependent modulation of neuronal nicotinic receptors by zinc.
We examined the effect of zinc on rat neuronal nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes as simple heteromers of alpha2, alpha3, or alpha4 and beta2 or beta4. Coapplication of zinc with low concentrations of acetylcholine (</=EC(10)) resulted in differential effects depending on receptor subunit composition. The alpha2beta2, alpha2beta4, alpha3beta4, alpha4beta2, a...
متن کاملIdentification of four classes of brain nicotinic receptors using beta2 mutant mice.
Although the expression patterns of the neuronal nicotinic acetylcholine receptor (nAChR) subunits thus far described are known, the subunit composition of functional receptors in different brain areas is an ongoing question. Mice lacking the beta2 subunit of the nAChR were used for receptor autoradiography studies and patch-clamp recording in thin brain slices. Four distinct types of nAChRs we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 15 شماره
صفحات -
تاریخ انتشار 1997